3.6.8 \(\int (a+b \cos (c+d x))^{7/2} \, dx\) [508]

Optimal. Leaf size=246 \[ \frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \]

[Out]

24/35*a*b*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*b*(a+b*cos(d*x+c))^(5/2)*sin(d*x+c)/d+2/105*b*(71*a^2+25*b^2
)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d+32/105*a*(11*a^2+13*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)
-2/105*(71*a^4-46*a^2*b^2-25*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c)
,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 246, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2735, 2832, 2831, 2742, 2740, 2734, 2732} \begin {gather*} \frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 d}+\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {a+b \cos (c+d x)}}+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{35 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(7/2),x]

[Out]

(32*a*(11*a^2 + 13*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(105*d*Sqrt[(a + b*Cos
[c + d*x])/(a + b)]) - (2*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x
)/2, (2*b)/(a + b)])/(105*d*Sqrt[a + b*Cos[c + d*x]]) + (2*b*(71*a^2 + 25*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c
+ d*x])/(105*d) + (24*a*b*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(35*d) + (2*b*(a + b*Cos[c + d*x])^(5/2)*Si
n[c + d*x])/(7*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2735

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
- 1)/(d*n)), x] + Dist[1/n, Int[(a + b*Sin[c + d*x])^(n - 2)*Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c +
d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^{7/2} \, dx &=\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {2}{7} \int (a+b \cos (c+d x))^{3/2} \left (\frac {1}{2} \left (7 a^2+5 b^2\right )+6 a b \cos (c+d x)\right ) \, dx\\ &=\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {4}{35} \int \sqrt {a+b \cos (c+d x)} \left (\frac {1}{4} a \left (35 a^2+61 b^2\right )+\frac {1}{4} b \left (71 a^2+25 b^2\right ) \cos (c+d x)\right ) \, dx\\ &=\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {8}{105} \int \frac {\frac {1}{8} \left (105 a^4+254 a^2 b^2+25 b^4\right )+2 a b \left (11 a^2+13 b^2\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{105} \left (16 a \left (11 a^2+13 b^2\right )\right ) \int \sqrt {a+b \cos (c+d x)} \, dx+\frac {1}{105} \left (-71 a^4+46 a^2 b^2+25 b^4\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {\left (16 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{105 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (\left (-71 a^4+46 a^2 b^2+25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{105 \sqrt {a+b \cos (c+d x)}}\\ &=\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.14, size = 211, normalized size = 0.86 \begin {gather*} \frac {64 a \left (11 a^3+11 a^2 b+13 a b^2+13 b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-4 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+b \left (488 a^3+262 a b^2+b \left (752 a^2+145 b^2\right ) \cos (c+d x)+162 a b^2 \cos (2 (c+d x))+15 b^3 \cos (3 (c+d x))\right ) \sin (c+d x)}{210 d \sqrt {a+b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(7/2),x]

[Out]

(64*a*(11*a^3 + 11*a^2*b + 13*a*b^2 + 13*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/
(a + b)] - 4*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a
 + b)] + b*(488*a^3 + 262*a*b^2 + b*(752*a^2 + 145*b^2)*Cos[c + d*x] + 162*a*b^2*Cos[2*(c + d*x)] + 15*b^3*Cos
[3*(c + d*x)])*Sin[c + d*x])/(210*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(280)=560\).
time = 0.21, size = 824, normalized size = 3.35

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{4}+648 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{3}-600 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{4}+752 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b^{2}-1296 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{3}+640 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{4}+244 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3} b -1128 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b^{2}+860 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{3}-360 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{4}-71 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{4}+46 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b^{2}+25 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{4}+176 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{4}-176 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3} b +208 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b^{2}-208 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{3}-244 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{3} b +376 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} b^{2}-212 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \,b^{3}+80 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{4}\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d}\) \(824\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/2*d*x+1/2*c)^9*b^4+648*cos(1/2*d
*x+1/2*c)^7*a*b^3-600*cos(1/2*d*x+1/2*c)^7*b^4+752*cos(1/2*d*x+1/2*c)^5*a^2*b^2-1296*cos(1/2*d*x+1/2*c)^5*a*b^
3+640*cos(1/2*d*x+1/2*c)^5*b^4+244*cos(1/2*d*x+1/2*c)^3*a^3*b-1128*cos(1/2*d*x+1/2*c)^3*a^2*b^2+860*cos(1/2*d*
x+1/2*c)^3*a*b^3-360*cos(1/2*d*x+1/2*c)^3*b^4-71*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/
(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+46*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*
d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+25*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^4+
176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2
*b/(a-b))^(1/2))*a^4-176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(c
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b+208*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(
a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2-208*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(
1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3-244*cos(1/2*d*x+1/
2*c)*a^3*b+376*cos(1/2*d*x+1/2*c)*a^2*b^2-212*cos(1/2*d*x+1/2*c)*a*b^3+80*cos(1/2*d*x+1/2*c)*b^4)/(-2*sin(1/2*
d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.15, size = 474, normalized size = 1.93 \begin {gather*} \frac {\sqrt {2} {\left (37 i \, a^{4} - 346 i \, a^{2} b^{2} - 75 i \, b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (-37 i \, a^{4} + 346 i \, a^{2} b^{2} + 75 i \, b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 48 \, \sqrt {2} {\left (-11 i \, a^{3} b - 13 i \, a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 48 \, \sqrt {2} {\left (11 i \, a^{3} b + 13 i \, a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, {\left (15 \, b^{4} \cos \left (d x + c\right )^{2} + 66 \, a b^{3} \cos \left (d x + c\right ) + 122 \, a^{2} b^{2} + 25 \, b^{4}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{315 \, b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/315*(sqrt(2)*(37*I*a^4 - 346*I*a^2*b^2 - 75*I*b^4)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/2
7*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(2)*(-37*I*a^4 + 346*I*a^2
*b^2 + 75*I*b^4)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*co
s(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) - 48*sqrt(2)*(-11*I*a^3*b - 13*I*a*b^3)*sqrt(b)*weierstrassZeta(4/3*
(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 -
9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) - 48*sqrt(2)*(11*I*a^3*b + 13*I*a*b^3)*sqr
t(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*
b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) + 6*(15*b^4*cos(d
*x + c)^2 + 66*a*b^3*cos(d*x + c) + 122*a^2*b^2 + 25*b^4)*sqrt(b*cos(d*x + c) + a)*sin(d*x + c))/(b*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3060 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+b\,\cos \left (c+d\,x\right )\right )}^{7/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^(7/2),x)

[Out]

int((a + b*cos(c + d*x))^(7/2), x)

________________________________________________________________________________________